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Characteristic operators and vectors for the system of differential equations of the linear theory of  elasticity were 

introduced in [1-3]. Determination of the operators and vectors was reduced in [3] to a special coupled eigenvalue problem 

for six numerical matrices comprising the components of the elastic modulus tensor. Here, we propose a method of structur- 

ing the matrix of  the operators of the linear theory of elasticity for anisotropic materials in such a way as to permit reduction 

of the initial system to three independent wave equations. We find specific classes of anisotropic materials that depend on 

arbitrary parameters. In particular, we obtain formulas to describe an elastic anisotropic medium (generalization of a Green 

medium) with longitudinal and transverse waves for any direction of the wave normal. Formulas for special orthotropic and 

transversely isotropic materials are also obtained. 

With arbitrary anisotropy and an absence of body forces, the equations of the theory of elasticity appear as follows in 

orthotropic cartesian coordinates x 1, x 2, x 3 [4] 

q j u j  = o, &j = L, = A , ~ , o j o  ~ - aboo.., ( 1 )  

where uj is the displacement v e c t o r ;  Ai(k/)j = (Aik/j + Aitkj)/2; Aik/j  = Akilj  = A/ji k is the constant tensor of the elastic 
moduli; p is the constant density of the material; 6ij is the Kronecker symbol; 0 and O k are derivatives with respect to time 

and the coordinate Xk; repeating letter subscripts denote summation. The properties of the coefficients Ai(k/)j were studied in 

[5-7]. 

For operators (1), we attempt to find differential matrices T = [tjp], D = diag(D t, D 2, D 3) with constant coefficients 

such that LT = TD, [ T I ~ 0. Then the general solution of Eqs. (1) will be as follows: u = T,r D~o = f, Tf  = 0. The 

formulas u = T~o, ~o = T'~ (the prime denoting transposition) transpose the solutions of  the equations Lu = 0, D~o = 0 [2, 

3]. The expression u = TT'fi is the formula for obtaining new solutions, i.e. Q = TT' is a symmetry operator in the sense 

of group analysis [8]. 

Let D 1 = akl(1)Okt--O0.., akl (z) = a/k (1), tj/ = O~js0 s We then write the relation LT = TD in the form 

C1) 0 (Ai(,a)i - 6oa~s )at, ~, = O. (2) 

Reducing similar terms in (2) and equating the coefficients with Okl s to zero, we can use (2) to obtain [3, 9] a special coupled 

eigenvalue problem for six matrices A (1) = A i ( l l ) j  . . . . .  A (6) = x/'~i(t2)j: 

(Ai(zl~i - 6ijan)ctji = O, (A,(22)s - 6#a22)aj2 = O, 

(Ai~33)) - -  6#a33)~xj3 - 0 ;  

2(A~(~3)~ - ,5,ja23)c~j: + (A,(22)~ - boa22)a~3 = 0, 

(Ai(33)j - -  ~ija33)ct/2 ..4.- 2(Ai(~)j - 6 ( i a ~ ) a . ,  3 = 0 ;  

2(Ai(13)S - 6qal3)ctsl + (Ai(xl)s - 6oav..)a p = O, 

(A,C33)j - ~qa33)c~iz + 2(.Ai(l:~)/ - -  r : 0 ;  
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2(Ai(t2)j - c~ ia12)<xj~ + (Ai(u; ~ - r3,.iau)czj2 = O, 

(Ai(22). ' -- $oazz)~x: + 2(A,(t2)~ - ~,iazz)a/z = 0; 

2[(Ai(23)i -- 6ija23)ctix + (Ai(l~;i - t~ a~3)~2 + (.,402) i - ~qal2)ctj3] = O. (3) 

Here,  akt = ak/(1). System (3) consists of  30 equations and is difficult to solve directly. However ,  if we assign ~s ,  then it 

becomes fairly simple to find the eigenvalues akt and the corresponding matrices A (1) . . . . .  A (6) and, thus [6, 7], the matrices 
Aij of  the elastic moduli  in the generalized Hooke ' s  law. 

The matr ix  T has the following structure [3]: 

T = [ a . d ,  fljpOp, e~,,~a,,dS.pO.p I (4) 

(s are L e v i - C i v i t a  symbols) ,  while 

a ' :  + : ' a  = 0 (5) 

is the condition of  orthogonality of  the columns tjl, tj2. It follows f rom (5) that call3 = c is an antisymmetric matrix (c'  = 
- c ) .  If  I c~ ] # O, then B = (od) - l c  = (ct') - l ~  = ~ce, ~' = - ~ .  Matrix (4) can be written as 

r = [ t j l , . j _~ t  ,, % : ~  - qt l~ ,  ], (6) 

where tjl and c m are arbi trary non-colinear vectors. The determinant of  matrices (4) and (6) has the form 

I TI = t,3tj, = (t,d,,)(td,~) = (t,:,,)(cc,,L:~, - %t:IL.). 

Let a certain symmet r ic  matrix A be represented in terms of  eigenvalues and orthonormalized eigenvectors (fipfiq = 
~pq): 

= A irf, J j A = F A F '  "" A = F ' A F ,  ,,'t q. 

We use this to obtain the following eigenvalues for p = q 

(7) 

For p # q 

:~, = A,/,~, = O, ~,1 = A,/,~I = O, 

~'3, = Ajj12 = O. (8) 

Conditions (8) are necessary and sufficient for fip to be eigenvectors,  while expressions (7) give the eigenvalues of  matrix A. 
As was shown in [3], the matrices A (1), A (2), and A (3) correspond to the characteristic (non-normalized) vectors 

[%,/~,~, %-~,~ ft.11, (9) 
[%, flj,, ,y.,~,,,~ #,,~], t,%,,aj,,%,,,~,,,3 ,r ]. 

Taking Eqs. (3) and (7)-(9) into account, we find the eigenvalues of  A (1), A (2), and A (3) and the conditions under which 

expressions (9) are eigenvectors of  these matrices. We thus obtain 

a(3) ai(u)/%~%,1 fl~:#nael ~,tl. (10) 

11 = fl ,1 f l ,  l ' ~sl~sl 

2tcl) f l j l  = O, 2 (l~ = zt = Ai(n~ja, t -3t = A,(tt)ja~le/,,,,,cz,,,t t5,,1 0, 
A(1) 

32 = AiCu)j fl,:#,~c%t fl~l = 0 (11) 
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(here and below, we omit the normalizing factors); 

22 = ~s20~s2 ' - -22  = ~s2fls2 

a(3) Ai(22)/.,~. a~2 [J,,F/t,~ae2 flq2. 
22 = as2~s2 fit2 fit2 ' 

a~2t' = Ai, n)j~x,2 fl,2 = O, ] '2) = -3 t  = Ai(z2)jai28j,,~,.2 fin2 O, 
al~) 

32 = A,(22)j/~,2ev..a,.2 ft.2 = 0; 

tl) ~ _(2) Ai(33]j fli3 ill3 
033 - -  (:Z a ' /d33 '= 

�9 3 ,~ ,a,3 f l ,3 

a(3) Ai(33~le,mnam3 fl.3~l/~/a'~3 flq3. 
33 = " ~s3Gs3 fir3 ~,3 ' 

~..(3) ]~j3 " -  O, ] ( 3 )  = 21 -- Ai(33)jc~,3 "'31 = A,(33)jai38inmC~m3 [~n3 O, 
~l(3) 

32 = Ai(33)1 fl:3ejm.(Xm3 fin3 = O. 

(12) 

(13) 

(14) 

(15) 

Expressions (9) will be eigenvectors for A(D, A(2), and A (3) if conditions (11), (13), and (15) are satisfied. The eigenvalues 

are then given by Eqs, (10), (12), and (14). 
Since the matrices Ai(k/)j are symmetric, then if we multiply Eqs. (3) by the corresponding columns of ais, ~ip and 

take the first three equations into account, we can use (3) to obtain 

~) A.(23)~cci2ct12 , A,(23)jcxt3~/3 

G23 ~ ~m2~,.2 ~n3Oln 3 

a( l )  Ai(13)/ada/1 = ai(13)lai3ai3 
13 ~ ~mlaml ~n3Gn3 ' 

(t) Ai(12)laitC~jl al(12)/~i20'j2 

(d~2 -~- aml~ml C~n20~n2 

% = E . ~ . ,  = # .3 f l .3  ' 

a(2) Ai(u)i ~n ~il Ai(m i ~i,. ~i2 

It is evident from (16) that the following conditions must be satisfied 

(16) 

A~,3~jl,~,.2a,~2 - %3a3) = 0, 

A (~176 - ~ 
i(13)j t a m . a m l  an30~n3 } ~" O, 

,~mi~a,.1%~ - a 2 a 2  ) = 0; 

[e , ,~ ,  ~,,e,, / , .3, ,~. ,p.,  - ~.,~.,) = o, 

a {~"P# a'2~J~/= o. ) 

(17) 

In (4), the third column has the form tj3 = 7j(sp)0so, where: 
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1 

(18) 

We now write the relation analogous to (2): 

(3) __ 
(A~(~,)j - 5,sa~, )Tj(..)0..~ 0. (19) 

Reducing similar terms in (19) and equating the coefficients with 0kisp to zero, we obtain the following system of  equations 

f rom (19) 

(A,(n)s 

(Ai(22)i 

(Ai(ll)i - ~/ /a l l ) '~j ( l l )  - -  0 ,  (Ai(22)1 - -  ~0a22)~'f122) = 0 ,  

(Ai(33)j -- ~qa33)Y/(33 j = 0; 

2(Ai~23)j - 6i)a23)Y~(22 ) + 2(Ai(22)~ -- ~sa22)~'R23) ---- 0, 

2(A~(23)i - ~ija23)~/)(33) "~" 2(Ai(33)~ - -  (~qa33)~/j(23) ---~ 0; 

2(A~.5)S - b~f~3)~'S~u) + 2(A~u)~ - ~j%)~'S(~3) -- 0, 

2(Ai(13)i - -  s ) -~ 2(Ai(33)1 - 6qa33)~)(13 ) ---- 0; 

2(Ai(12)j - ~ijal2)yj~ll ) + 2(Ai(ll)j - ~sall)y~t2) = 0, 

2(At(12)i  - ~qa12)~//(22) + 2(Ai(22)j  - ~i/a22)~/j(12) = O; 

- -  (~ila11)~/~(22) + (A/(22}j - (~ila22)~/1(11) .4- 4(At(12)l  - ~ila12)Yl(12) -~. O, 

- -  d~/jaxl)yj(33 ) + (Aic33)j - ~iia3~)yj(n) + 4(A/(13)j - ~isai3)yi(z3) = 0, 

- -  5~iaz2)~S(33 ) + (A/c33)j - b,p33)Yj(22 ) + 4(Air -- 6,sa23)yj(n) = 0; 

2(Ai(u) i - 6 / p H ) y j ( 2 3  ) + 2(Ai(23)i  - -  6~ja~)y~(u) + 

+ 4(Ai(13)i - r ) + 4(Ai(t2)i  - ~i)al2)Y/(13) = 0 ,  

2(A~r - ~i)a2z)ys(13) + 2(Ai(t3)j - ~sal3)ylcz2) + 

+ 4(Ai(23)i - r '+ 4(Ai(12)/ - -  ~1a12)~/)(23) = 0 ,  

2(A/03~ ~ - 6qa3~)yl(nl + 2(Ai(~2)i - 6ilaz2)yi(35 ) + 

+ 4(Ai(~3)~ - 6i~a23)yj(~3 ) + 4(A~(~3)~ - ~oax3)yi (23)  = 0 .  

(20) 

Here,  akt = akt (3) = a/k (3). Taking (18) into account, we find that the first three equations of  (20) lead to Eqs. (10), (12), 

(14) for all(3), a22 (3), a33 (3) and conditions (11), (13), (15). Analogously to (16), we find f rom the other equations of  (20) 

that 

(3) Ai(23)iYi(22)~'l(22) Ai(23)/Yi(33)Yl(33) 
a23 : ym(22)~m(22 ) ~.(33)Yn(33) 

a(3~ a,<i3)?',(u)Tj<u) a~c~3)/Y,.~)Yl(33) (21) 
13 ----" Ym(ll)Ym(ll } "~--yn(33)~/n(33) 

~(3) A~( 12)fVi(l I)YI( TM Ai(12)iYi(22)YI(22) 
w12 = Ym(tl)~m(ll) Yn(22)Yn(22) 

It is apparent  f rom (21) that the following conditions must be satisfied 

A ( ~/i(22)~/{22, ~/{33,~1(33} / = 0 ,  
i(23)j ~ Ym(22)y.,,nf22) ~fn(33)Yn(33) } 

A (~i ' l l )}/f l l l )  - -  }ri(33)~1(33) / = O, (22 )  
i( 13).J ~m(l l )ym(l l  ) ~n(33flPn(33) } 

( ,',,22,,':,1 = o. A~~ - r~(22)~'~m)) 

Thus, the algori thm for constructing operators  T and D will be as follows. We specify the matr ices  ~ j s ,  /~jp, which 

are connected by  condition (5). We  then require satisfaction of  necessary conditions (11), (13), (15), (17), (22), which we use 

to fired possible values of  the matrices Ai(k0 j. We then use Eqs. (10), (12), (14), (16), and (21) to obtain the coefficients 
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ak/(1) ' akl(2) ' ak I (3). Finally, we check to make sure that all remaining equations of (3) and (20) are satisfied. We used this 
method and obtained basically new solutions. 

The operators T and D were found earlier [2, 3] for isotropic and transversely isotropic materials. Now we construct 

a general definition of certain classes of anisotropic materials with arbitrary parameters using the operators T and D. To 

illustrate, if ajs = 0is, then by following the algorithm and performing all necessary calculations we obtain a generalization 
of a Green medium [9, 10]: 

q 

AI.I 

A H - A ~  All sym 

A n - AssAil  - A44 A H 

A41 0 0 A44 

-A63 
0 Ass 0 ~ Ass 

-As2 -A41 
0 0 a63 ~ ~ A6~ 

(23) 

Here 

while the operators T and D have the form 

A,1 = -2v~'bc2c3; A,, = 2(a - bc2t); 

As2 = -2vr~-bclc3; Ass = 2(a - bc22); 

A63 = -2"r A ~  = 2(a - bc~3), 

T = [a: e:,..%O, cjO~k - c,a~l; 

D 1 = AnOkk -- p O .  , 

D 2 = [ (a  - b c c , , ) , 5 ~  + bckq la  ~ - p O . . ,  

I ) ,  = aa~  - po . . ,  

(24) 

(25) 

where Al l ,  a, b, cl, c 2, and c 3 are arbitrary parameters such that matrix (23) is positive definite [11, 12]. When b = 0, Eq. 
(23) yields an isotropic material. 

If  we replace O k by n k and replace 0.. by [ v [ 2 = vivi (v  i = [ v [ ni), we can use (25) to find the phase velocities 
corresponding to the wave normal nk: 

PI"I~ -- 

p l o l ' ~  = A . , , k n  , = . 4 . ,  

[(a - b c ,  c,,,)hja + b c k q l n k n  , = a - bc,,,c,,, + bckclnkn ,, 

p I ol ~, = a n : ,  = a. 

It is evident from (24) that Eqs. (23)-(25) define a medium with purely longitudinal and purely transverse waves [13], regard- 

less of the direction of the wave normal n k. Since [ L [ = [ D [ = D1D2D 3, it follows from (25) that the equations of the 

phase velocity surface and refraction surface [13] decompose into independent equations of  three surfaces. These properties 

are essentially new properties for anisotropic materials, apart from the cases of isotropic and transversely isotropic materials 
[13, p. 165]. 

We now use (23) to find the strain energy: 
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2 0  = Aqs163 = All (El  q" ~'2 + E3) 2 +  A4,4(s - 2E3~'2) + A55(E25 -- 2s163 + A66(e2~, - 2 e : l )  (26)  

+ a , t ( 2 e : t  - vt~E6Cs) + Asz(2e:2  - 3/t2-E6E4)+ A63(2e6e3 - q~2-f5,f4) 

(e 1 = e11 . . . . .  e 6 = ,f'2"e21 represents strains). An expression that is similar to (26) but does not have the last three terms was 

presented in [10, p. 313] for 2,b for a Green  medium. The author of [10] also wrote that Green ' s  expression "is the most 

general form of  the function ~ for which the propagation of transverse plane waves is possible,  i .e. for which the displace- 

merits will be paral lel  to the wave front." Equations (23) and (26) show that the expression in [10, p. 313] is not the most 

general form for 2~ ,  since it has no terms with A41, A52, A63 - which may also be nontrivial.  

If  T has the form (oq # ~2 # ~3 # 0) 

t , t ,  = =~,o,, + a'A, + =~A3, 
c t l  = c~ala I + c2a2a 2 + c3a3a 3, 

then the Hooke ' s  law matr ix  

A = q 

2 a +  bax 
2 

bccta 2 - -  a a + /xx 2 sym 

/ :u1% - a ~2r -- a a + b~23 

0 0 0 2a 

0 0 0 0 2a 

0 0 0 0 0 2a 

(27) 

Here,  the characterist ic  operators  

2 ba22)022 + (a + 0 1 =  (a + ba~)a~ + (a + ba~3)O33 - pO , (28) 

D 2 = D 3 = aOkk - - p O  

In this equation, a ,  b, a i, and c i are arbi trary parameters .  The conditions of  posit ive-definiteness of  matr ix  (27) are as 

follows: a > 0, b > 0, b(alcx 2 + c~lc~ 3 + cx2o~3) > ~x. Material  (27) is a special case of an orthotropic material .  

Let  

T = 

o[,, -o, ] 
[~a ~92 Oz -a023 / ' 

03 0 0 u + 022 j 

a 1 = a 2 = 1, a 3 = a ,  

c l  ---- c2 ---- 0 ,  C3 ---- 1, 

then [3] ( ~  # 1) 

q 

F 
i 

!An 

A21 

Al t~  - -  A33 

0 

0 

0 

All  

A31 A33 

0 0 

0 0 

0 0 

sym 

2(Aa3 - -  Al t~  2) 

l - -  c t  2 

0 

0 

A44 

0 All  - A21 

(29) 
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D~ = Al l (Oi l  + 022 ) + A33033 -pc) , 

l 1 
32  = 2 ( A l l  - A2t)  (Oil + 0~2) + "2 A.4033 - pO . ,  

1 
D 3 = -~A~Okk -- p d . .  (30) 

Equations (29) define the subclass of transversely isotropic media. There are actual materials that conform to our relations; 

for example, for hexagonal crystals of cadmium [13], the parameter a = 0.575. 

If for example: 

T = 02 01 023 

-03  0 0it + 02 

then 

A q 

A11 

A21 All sym 

- A l l  - A l l  All 

0 0 0 A44 

0 0 0 0 A,H 

0 0 0 0 0 All -- A21 

D t = AliOk~ -- pi9 , 
(31) 

I 1 
D2 = 2 ( a l l  - A21)(c311 + 022) + 2 A44033 - lot) , 

I 
D 3 = 2A440kk - - p c ] . .  

Matrix (31) cannot be made positive definite. It is therefore physically impossible for a material with such elastic moduli to 

exist, even though all of  the remaining conditions and equations are satisfied. 

The examples presented above do not exhaust all of the cases in which Eqs. (1) reduce to three independent wave 

equations D~ = f. The other variants cannot be written out. As was noted above, Eqs. (28) and (30) can be used to find the 

phase velocities corresponding to the wave normal n k, while the equations of the wave surfaces [13] decompose into indepen- 

dent equations of three surfaces. 

Note. When we assign ajs and find Bjp from the relation 

io ,: ] als ~IP "~" C p ~ C 3 0 Cl 

-- C2 r 

we must consider all possible values of the parameters c 1, c 2, c 3, rather than just the variant in which all c i are equal to zero. 

More general classes of  anisotropic materials allowing the operators T and D can be obtained in certain cases for trivial 

values of  c i. 

The above study was conducted with financial support from the Russian Fund for Basic Research ( 9 3 - 0 1 3 - 1 6 7 5 7 ) .  
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